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Abstract Theoretical work by Zhao et al. in (ACS Nano Lett 266(5):7226–7234,
2011) employing a novel “particle swarm methodology” has predicted the pressure-
induced collapse of various, respective 1-dimensional members of the (n, 0) C nanotube
family, into their corresponding 3-dimensional network C patterns realized as the
various C-based hexagonites. In particular, the so-called (6, 0) nanotubes, in which
the circumference of this nanotube type is comprised of a polyacene-like belt of six
benzene-like tiles, is predicted by Zhao et al. to spontaneously collapse with extreme
pressure in to the parent member of the C-based hexagonite family of lattices. This
prediction is supported by an independent theoretical analysis of crystallographic data
obtained in a synchrotron-nanotube experiment conducted in a diamond anvil cell in
2005 by Wang et al. Such nanotube-hexagonite phase transformations of C, are termed
here as “hexagon-preserving-carbon-allotrope-transformations”, as the hexagonal C
rings are preserved in the C phase transformations. By analogy, the classical phase
transformation of C-based graphene to C-based diamond is described as a “hexagon-
preserving-carbon-allotrope-transformation”. The details of these descriptive labels
are discussed in this communication.

Keywords Crystallography · Carbon allotropy · Chemical topology · C nanotubes ·
High pressure · Synthesis

In 2011 Zhao et al. predicted a series of what were termed “three-dimensional nanotube
polymers” using a novel so-called “particle swarm methodology” [1]. The theoretical
group thus simulated the high pressure properties of groupings of various (n, 0) and
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Fig. 1 A “zigzag” nanotube cylinder identified by the standard notation (n, 0) where in the illustration “n”
equals 15

(n, n) nanotubes [2], in which they discovered the spontaneous formation, at pressure,
of several novel crystalline allotropes of carbon, from collapse of the corresponding
nanotubes [3]. Of particular interest in the present communication is their prediction
of the formation of the so-called hexagonite crystalline C allotrope and several of
its expanded derivatives, [4–6] from the pressure-induced collapse of groupings of
various members of the (n, 0) nanotube family [3]. As each member of the (n, 0)
family of carbon nanotubes is comprised of all 3-connected carbon cylinders with a
circumference defined by the fusing together of “n” benzene-like tiles, in a polyacene-
like belt [2], it becomes apparent that carbon hexagons present in the component
(n, 0) nanotubes are preserved in the simulated high pressure phase change into the
corresponding hexagonite lattices. See Fig. 1 for illustration of representative (15, 0)
nanotube.

In a strict structural analogy, the high pressure C phase transformation of graphite to
diamond, [7,8] involves the preservation of C hexagons in going from a 2-dimensional,
all 3-connected, van der Waals layering with a Wells point symbol of 63 and Schlaefli
symbol of (6, 3) [9,10], to the densest possible sphere packing of tetrahedral C atoms
as the 3-dimensional, all 4-connected, diamond lattice with a Wells point symbol of 66

and Schlaefli symbol of (6, 4) [9,10]. The density change in such a hexagon preserving
transformation of C is dramatic, as the starting graphite layered material, at a density
of 2.27 g/cm3 (see Fig. 2), collapses under extreme pressure into the corresponding
3-dimensional diamond network at a density of 3.56 g/cm3 (see Fig. 3) [7,8]. Thereby
in comparison, the predicted transformation of (6, 0) C nanotubes, with a topology of
approximately 63 (see Fig. 1) to the corresponding hexagonite lattice with a topology
of (66)2(63)3 [9,10], as shown in Fig. 4, also involves the preservation of C hexagons in
going from a van der Waals cylinder packing of (6, 0) C nanotubes, that then collapses
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Fig. 2 The graphene plane lattice with Wells point symbol 63 and Schlaefli symbol (6, 3)

Fig. 3 Cubic diamond (3C)
polytype with the Wells point
symbol 66 and the Schlaefli
symbol (6, 4)

into the densest possible 3-,4-connected C cylinder packing as the hexagonite lattice
(see Fig. 4).

Hexagonite and its expanded derivative structural relatives, identified as “the hexag-
onites” in the discussion above, as well as the other discrete C allotropes including
the fullerenes, nanotubes, graphene and diamond each can be characterized in a topo-
logical sense by the methodology described here [9,10]. Thus these C patterns, as
described herein, can be classified and mapped according to a chemical topology
scheme introduced by the crystallographer Wells [9], and later extended by us [10].
This chemical topology scheme is based upon identifying the so-called Wells point
symbol for a given structural-type, where the Wells point symbol in a generic binary
stoichiometry network is given by (Aa)x (Bb)y . In this notation, the bases represent
the circuitry within the structure as being in “A-gon” and “B-gon” polygonal circuits,
the superscripts represent the respective connectivities of the vertices in the structure
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Fig. 4 Vertical and lateral views of the C-based parent “hexagonite” lattice with Wells point symbol
(66)2(63)3

as “a-connected” and “b-connected”, and finally the subscripts identify the stoichiom-
etry of the structure in terms of “x” structural components of topology “Aa”, in a
ratio with “y” structural components of topology “Bb”, within the respective unit of
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pattern. From analysis of this notation one can determine a weighted average polygon
size in the structure, identified as “n” in Equation (1) below, and a weighted average
connectivity in the structure, identified as “p” in Eq. ( 2).

n = (a · A · x + b · B · y) / (a · x + b · y) (1)

p = (a · x + b · y) / (x + y) (2)

These parameters called the polygonality “n” and the connectivity “p” are character-
istic of each and every one of the polyhedra, tessellations and networks, and once
identified they can be used to heuristically map the various structures in a construction
briefly described here. Thus the polyhedra are characterized by a simple mathematical
formula due to Euler [9,10], shown as Equation (3) below, that forms the basis for this
heuristic mapping construction. In Eq. (3) the number of vertices in the polyhedron
is identified as “V”, and the number of edges is identified as “E”, and the number of
faces in the polyhedron is identified as “F”:

V − E + F = 2 (3)

And so for the various polyhedra, one can thus transform Eq. (3) into Eq. (4) shown
below, by employing the alternative, though rigorous and equivalent, set of defini-
tions of “n” and “p” for the polyhedra; given as the polygonality n = 2E/F, and the
connectivity p = 2E/V [9,10].

1

n
− 1

2
+ 1

p
= 1

E
(4)

It is thus Eq. (4), together with the analogous definitions of the weighted average
polygonality “n”, and the weighted average connectivity “p”, in Eqs. (1) and (2) that
can be used heuristically to create a topology mapping of all structures, as shown
below in Table 1 [9,10]. For reference, note in Table 1 that “t” is the tetrahedron, and
“o” is the octahedron, and “i” is the icosahedron, and “c” is the cube, and “d” is the
dodecahedron [6]. Note also, for reference as discussed above, in this topology map
the entry (6, 3) corresponds to the graphene sheet, and the entry (6, 4) corresponds to
the diamond polytypes. The Platonic polyhedra thus anchor this heuristic construction
and provide the basis for the structural organization of matter.

As hexagonite is a 3-,4-connected network, it contains an admixture of 3-connected
and 4-connected vertices in the unit cell. The overall connectivity of the lattice, p, is
taken as a weighted average of the 3- and 4-connected points as obtained from the
stoichiometry of the network. It is thus given by the decimal, or fractional, number p
= 3.4., as identified above. While the other key topological parameter in this analysis,
called the polygonality, is indeed identified as simply the integer n = 6, as inspection
of Fig. 4 will reveal, as discussed above. One can thus represent the topology of
hexagonite by the Wells point symbol (66)2(63)3 and this, then, has the corresponding
Schläfli symbol (n, p) = (6, 3.4), as described earlier. It is a Catalan C-network, that can
be expanded infinitely by insertion of 1,4-dimethylene-2,5-cyclohexadieneoid organic
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Table 1 Chemical topology mapping of the structure of matter according to coordinate pairs (n, p) identified
for each pattern

p 3 4 5 6 7 8 · · ·
n

3 † o i (3,6) (3,7) (3,8)

4 c (4,4) (4,5) (4,6) (4,7) (4,8)

5 d (5,4) (5,5) (5,6) (5,7) (5,8)

6 (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)

7 (7,3) (7,4) (7,5) (7,6) (7,7) (7,8)

8 (8,3) (8,4) (8,5) (8,6) (8,7) (8,8)

.

.

.

spacers between the barrelene moieties that make up the parent hexagonite lattice. This
has been described already by Karfunkel et al. in their 1992 paper [4–6].

It is interesting here to see that hexagonite, and the expanded hexagonites, are rep-
resented by the collective Schläfli symbol given by (n, p) = (6, 3x/x+y), where “x”
represents the number of 4-connected points in the unit of pattern, and “x + y” repre-
sents the sum of the numbers of 3- and 4-connected points in the unit of pattern, which
will increase in increments, as the 1,4-dimethylene-2,5-cyclohexadieneoid organic
spacers are added to the unit of pattern in the expanded hexagonites. Thus one sees
that the C-based hexagonites will possess discrete connectivities, p, that range from 3.0
(in the graphene limit) to 3.4 (in the hexagonite limit). Hexagonite, and its expanded
derivatives, therefore represent a related family of Catalan 3D C-based networks that
provide an interesting contrast to the Archimedean family of C-based fullerenes [6]. In
contrast to the Catalan hexagonites, the fullerenes collectively have the Schläfli index
(n, p) = (5x/x+y, 3), where “x” is the number of hexagons in the polyhedron, and “x
+ y” is the sum of the numbers of pentagons and hexagons in the polyhedron [6]. The
Schläfli relation, shown as Eq. ( 4) above, applies to all of the innumerable polyhedra,
including the many fullerenes described by the Schlaefli notation in this discussion.
Note that the parameter “E” in Eq. (4) refers to the number of edges in the respective
polyhedra with Schlaefli symbol (n, p). The number of edges “E” is thus related to the
number of vertices, “V”, and the number of faces, “F”, by the Euler identity, given in
Eq. ( 3).

One could thus picture the corresponding (n, 0) nanotube powder, packed into the
open gasket of a diamond anvil cell (DAC), at an ambient density of about 1.75 g/cm3.
If one then supposes that the individual nanotubes, in the disordered powder, sponta-
neously become ordered with the onset of extreme pressure, and become aligned with
their cylinder axes normal to the pressure axis of the DAC, they then would form a
van der Waals cylinder packing of nanotubes structurally comprised of component C
hexagons. Pressure could then be further applied to the organized powder, and the (n,
0) nanotube assembly of individual, parallel C cylinders would then eventually make
physical contact with each other, and this would then comprise a closest cylinder
packing of nanotubes, but not the densest possible cylinder packing of C.
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Evidently, at a pressure of about 1 Mbar [3], the densest possible (6, 0) nan-
otube cyclinder packing of component C hexagons, collapses into the densest possible
hexagon-preserving C cylinder packing, as the hexagonite lattice is created in the form
of nanocrystals with a crystalline density of approximately 2.45 g/cm3, see Fig. 4 [6].
Therefore, the pressure-induced phase transformation of powdered (6, 0) nanotubes
to nanocrystalline hexagonite, in one particular instance of the predictions of Zhao et
al. of the synthesis of the C-based hexagonites [1], is supported by the corresponding
theoretical analysis of Bucknum et al. [6]. This structural phase transformation of 1-
dimensional C nanotubes, to the corresponding 3-dimensional hexagonite C lattices,
in each and every case described by Zhao et al for the various (n, 0) nanotubes, pre-
serves the C hexagons through the transformation to the denser 3-dimensional lattice
structure. Such structural C phase transformations are identified here as “hexagon-
preserving-C-allotrope-phase-transformations” and it can be observed, as described
above, that such structural transformations are entirely analogous to the transforma-
tion of graphite into diamond [7,8], as C hexagons in this classical pressure-induced
structural phase transformation, are preserved in each respective end-member, in the
course of the transition to the denser structure of diamond.
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